Algebraic and Arithmetic Lattices . Part I 1

نویسنده

  • Robert Milewski
چکیده

(1) Let L be a non empty reflexive transitive relational structure and x, y be elements of L. If x ≤ y, then compactbelow(x)⊆ compactbelow(y). (2) For every non empty reflexive relational structure L and for every element x of L holds compactbelow(x) is a subset of CompactSublatt(L). (3) For every relational structure L and for every relational substructure S of L holds every subset of S is a subset of L. (4) For every non empty reflexive transitive relational structure L with l.u.b.’s holds the carrier of L is an ideal of L. (5) Let L1 be a lower-bounded non empty reflexive antisymmetric relational structure and L2 be a non empty reflexive antisymmetric relational structure. Suppose the relational structure of L1 = the relational structure of L2 and L1 is up-complete. Then the carrier of CompactSublatt(L1) = the carrier of CompactSublatt(L2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Sublattices of Nite Distributive Lattices

Algebraic properties of lattices of quotients of nite posets are considered. Using the known duality between the category of all nite posets together with all order-preserving maps and the category of all nite distributive (0; 1)-lattices together with all (0; 1)-lattice ho-momorphisms, algebraic and arithmetic properties of maximal proper sublattices and, in particular, Frattini sublattices of...

متن کامل

Algebraic Properties of Intuitionistic Fuzzy Residuated Lattices

In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the sam...

متن کامل

Symmetry groups for beta-lattices

We present a construction of symmetry plane-groups for quasiperiodic point-sets in the plane, named beta-lattices. The algebraic framework is issued from counting systems called beta-integers, determined by Pisot-Vijayaraghavan (PV) algebraic integers β > 1. The beta-integer sets can be equipped with abelian group structures and internal multiplicative laws. These arithmetic structures lead to ...

متن کامل

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

RADICAL OF FILTERS IN RESIDUATED LATTICES

‎In this paper‎, ‎the notion of the radical of a filter in‎ ‎residuated lattices is defined and several characterizations of‎ ‎the radical of a filter are given‎. ‎We show that if F is a‎ ‎positive implicative filter (or obstinate filter)‎, ‎then‎ ‎Rad(F)=F‎. ‎We proved the extension theorem for radical of filters in residuated lattices‎. ‎Also‎, ‎we study the radical‎ ‎of filters in linearly o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004